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● The SeaSonde crossed-loop/monopole receive antennas indeed measure angles accurately in 
the mapping of sea surface currents.

● For the sine, cosine, and constant antenna patterns (vs bearing angle), we illustrate this using 
the simple Arctangent function performed in software.

● For actual measured patterns that deviate from these ideals the more robust MUSIC algorithm 
is used and handles this direction-finding task very robustly.

● This process is applied independently at each of the many echo-signal Doppler frequencies 
induced by the radial current pattern observed within each radar range ring.

● The algorithm uniquely resolves up to two different directions over 360° that go with each 
Doppler spectral frequency.

● Since there are two Doppler bins for each of two independent Bragg echo peaks, there can be 
up to four directions resolved at each radial speed; this normally covers even the most complex 
flow fields one could expect to encounter.

● There is no hydrodynamic model fitted to the data, nor any hidden assumptions.

● The inherent speed resolution dictated by the SeaSonde Doppler-bin width is  4.7 cm/s at 12 
MHz; at the 25 MHz operating frequency, this speed resolution becomes 2.3 cm/s.

● The typical statistical (rms) bearing error due to noise in the SeaSonde (based on one-hour 
averages) is about 2°-3°.

● As in any system, other sources of error include hardware failure, misalignments, or misuse.

● Direction finding -- although unconventional and probably not useful for microwave radars 
-- is ideally suited to HF coastal current mapping, offering far more advangages than 
phased arrays that employ beam forming.



FAQ  --  How Does SeaSonde Measure Direction with Its Compact Antennas?

Q.  Your Codar systems have three colocated, tiny compact antennas with very broad beams at 
least 90° wide.  You're telling me that from their three signals, you can get current vector bearings 
to better than 5°?  Do you make some monstrous assumption (like fitting a restrictive model to the 
data), or do I have to wade through pages of heavy math in esoteric radar physics to understand 
how this miracle happens?

A.  None of these; you only have to be familiar with the 'tangent' function in trigonometry.  Our 
systems use direction finding (DF), perhaps the oldest known method of measuring the bearing of 
radio signals that goes back to 1900, far before radar was ever heard of.  DF was used long before 
beam forming, that employs antennas many wavelengths in extent (an array at HF a hundred 
meters or more long).  There are three small antennas in the receive unit: two crossed loops and a 
monopole.  Each receives vertically polarized radio signals, which is the only polarization 
component that can propagate above the highly conducting sea.  The two loops have cosine 
patterns ('figure-8') at right angles to each other; the monopole has an omni-directional pattern.  
Sketches of these patterns are shown below when looking offshore from a straight coastline.  When 
antenna amplitudes and phases are calibrated properly, the loops respond to a signal of complex 
amplitude  S   according to the equations shown below.  Therefore, a signal coming from direction  
ϑ  at a frequency  f  will have the responses shown.
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For Perfect Antenna Patterns

Loop #1 Voltage Response to 
Signal  S   From Direction  ϑ

Loop #2 Voltage Response to 
Signal  S   From Direction  ϑ

Monopole Voltage Response 
to Signal  S   From Direction  ϑ

The bearing angle  ϑ  is obtained by dividing the voltages of the loops by the monopole signal 
-- thereby cancelling the unknown and irrelevant signal amplitude  S   -- and the 'Arctangent2' 
function is taken (in software).  This works for signals coming from 360° in bearing; the monopole 
serves as the 'quadrant' reference in order to resolve the 180° ambiguity that loops alone have.



Q.  Wait a minute!  This is all fine if I have only one signal coming into my antennas.  What if I 
have two signals?  What happens then?

A.  No problem with two signals.  You can uniquely resolve two signals.  A proof is given in the 
Appendix for those interested in rigor.  Consider the following explanation for now.  There are 
three received complex voltages,  v1 , v2 , and v3 .  These constitute six measured real observables.  
With two signals, there are two unknown complex signal amplitudes  S1   and S2 ; as well as two real 
unknown bearing angles,  ϑ1  and ϑ2.  Hence there are six real unknowns and six measured 
quantities.  Therefore, if you do not want to read the derivation in the Appendix, perhaps you might 
accept that one can uniquely solve for the two desired unknown bearing angles,  ϑ1  and ϑ2.  If you 
want a bit of mental exercise, follow through the proof in the Appendix.

Q.  OK, fine, but it appears to me that we really have scattered signals coming from all over the 
ocean, not just from one or two directions.  This is where I still have a problem.  The system is 
receiving continuous signals from many bearings, and so far you have only described how your 
simple antenna can resolve one angle, or at most, two.  So you have a ways to go.

A.  Follow through this analogy.  In the simplest and oldest of direction-finding systems,  I would 
mechanically turn the loop to the null position.  I would thereby determine the bearing of the radio 
signal.  When there are many signals in the air, here's how I go about finding the direction of each.  
If they come from different stations, they are at different frequencies.  I merely tune my receiver to 
each frequency, one at a time, and rotate the loop null axis until it points in the direction of each 
signal source.  Thereby I have found the bearings of many signals from different directions.

Q.  Wait a minute! We're not talking about signals at different frequencies here.  We're talking 
about continuous sea scatter coming from many bearings simultaneously, perhaps from a sector as 
much as 180° looking out from the coast.  What does this have to do with radio stations with 
different frequencies?  Be honest: are you fitting some sort of hydrodynamic model to the real 
situation, or are we expected to believe in miracles here?

A.  Not at all.  We really are dealing with signals at different frequencies, just like our signals from 
multiple radio stations.  Take a simple example first: we have a straight coastline and a uniform flow 
parallel to the coast as shown below.  Remember that any radar -- through the Doppler relation -- 
sees only the component of velocity pointing toward (or away from) the radar, i.e., the radial 
component.  So we spectrally analyze the received signal (do an FFT on the signal voltages).  
Consider the SeaSonde with its 12 MHz operating frequency.  Assume our uniform current has an 
alongshore velocity of 50 cm/s (about one knot, a rather modest current).  In our normal 
processing, the time series used for spectral analysis is 256 seconds long.  This gives a spectral 
resolution of 4 millihertz, corresponding to Doppler speed resolution of slightly less than 5 cm/s.  
What all this actually means is that the output of the FFT is a bunch of signals at different 
frequencies.  This is identical to having a receiver that could tune to separate signal frequencies digitally, in 4 
millihertz frequency steps (or 5 cm/s radial velocity steps).  Let's see how many different signal radio 
frequencies we are 'tuning to' by our digital signal spectral analysis.  The radial velocity ranges 
between +50 cm/s to the North to -50 cm/s to the South.  The exact radial velocity at an angle  ϑ is  
vr = 50 sinϑ  (cm/s), and the received frequency vs bearing from the Doppler relation is  fD = 0.04 
sinϑ (Hz).  We have a total span of 100 cm/s divided by 5 cm/s per bin, giving 20 different signal 
frequencies, each of whose directions can now be found uniquely.  And this is only for one  of the two 
Bragg echo peaks (representing scatter from waves, for example, approaching the radar).  When 
one includes the information from the other peak (which is always present), this number of 



independent signals can double.  Therefore, we can have 40 different bearings available by applying 
the Arctangent function to each of these signals.  For the alongshore flow shown, this would lead to 
between 20 and 40 different directions.  Over 180°, these on average are spaced at 4.5° to 9° apart.  
So this is quite a good picture of the flow over a given range cell, is it not?

50 cm/s

ϑ

Q.  Fine, fine!  But you've picked a rather idealized, unrealistic flow for your example; if all 
currents were this simple, we wouldn't need HF radars to measure them.  What about a more 
complex circulation pattern?

A.  Shown below is a rather complex, interesting pattern that recurs frequently in Monterey Bay, as 
seen by the SeaSonde network.  Whether or not you want to accept at this stage that the SeaSonde 
can measure it accurately, admit that it is complex.  I'm drawing a range cell through it from our 
radar at Santa Cruz, in a region where the pattern appears to undergo the most variation. 
Underneath the total-vector current map is a sketch of the radial speeds that are sampled by the 
radar for this range cell.
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The radial currents vary continuously from strong approaching toward the West, to zero 
SouthWest, to mild receding toward SouthSouthWest, to zero South, to mild approaching to the 
SouthEast.  Consider the number of angle directions with the same radial speeds: there is generally 
only one, but at most two angles over this fairly complex current structure.  Recall that the crossed-
loop/monopole receive antennas and subsequent algorithm can resolve signals at the same 
frequency (speed) from either one or two different directions in the same velocity/Doppler bin.  
There are two bins with the same velocity, corresponding to the two Bragg peaks (redundant 
information); allowing for up to four angles with the same velocity.  Go ahead and try placing 
circular range cells at other locations, and see if you can find any situations where there might be 
more than two.  I can't.  Critics have claimed you can't measure complex spatial patterns -- like eddies and 
gyres -- with simple crossed-loop direction finding.  Haven't I just proved you can?  Do you detect any hidden 
magic in these simple arguments?



Q.  You're saying that most realistic -- and even quite complex -- current patterns can be handled 
with this technique, because they have at most two different directions that produce the same 
radial speed (or received signal frequency)?

A  That's what I'm saying alright.  There may possibly be a few cases with three.  What happens 
then is this.  First of all, the algorithm we use now is called 'MUSIC' (MUltiple SIgnal Classification), 
which is based on an eigen-analysis of the covariance matrix between the three antenna elements.  
Prior to this, we successfully used a 'maximum-likelihood' method, which is a variation on 'least 
squares'.  These algorithms take the noise level into account, and based on statistical confidence 
testing, they decide whether the bearing at a given radial speed best satisfies a one or two angle 
situation.  Thereby they select the appropriate one.  The amplitudes associated with the signals from 
one, two, (or perhaps three?) bearings will not be equal, so in the rare event there happens to be 
three, it will 'home in' on the directions of the two strongest signals.  A gap may appear at the 
position of the third signal.  But the amplitude of the signal at that frequency from the other Bragg 
peak will typically be stronger (the receding waves doing the scattering are most likely stronger if 
the approaching waves were weak at that point), so the gap (or third angle) will always be filled 
from the 'redundant' information available from the other peak.  We have done simulations, where 
the inputs are known, having a quadruple ambiguity (four angles with the same speed), and 
obained a pretty good recovery of the input current.  [Oceanography, vol. 10, no. 2, pp. 72-75 1997]

Q.  What about phased arrays?  Won't they do a lot better job?

A.  They have both limited resolution and field of view.  At ~12 MHz (one of the four SeaSonde 
frequency bands), a phased-array receive antenna 100 m in length (quite a bit of coastal real estate, 
you must admit, not even counting the transmit antenna) will have an average beamwidth varying 
between 14° straight out, to 20° at the edges of its ±45° maximum field of view.  This gives about six 
independent beams in this 90° scan quadrant.  That's not a lot of bearing information.  Of course, 
some have foolishly argued that you can scan the beam to any angle grid (thousands of angle bins) 
by just setting the phases (to thousands of settings), but the inherent information content remains 
dictated by its resolution: six pieces of angle information.  To resolve a quadruple-valued radial current 
pattern, you would need eight beams in this sector, by the familiar Nyquist criterion.  Longer arrays 
will of course do better, but consume commensurately greater dollars and land.

Q.  Wait a minute!  I've got a case I'll bet you can't handle with direction finding.  Suppose the 
currents are very weak, so your 50 cm/s becomes only 5 cm/s maximum.  Since the 'bins' -- 
containing the different signal Doppler frequencies resulting from the scatter -- are 5 cm/s wide, 
there are now only two between +5 cm/s and -5 cm/s (centered on +2.5 cm/s and -2.5 cm/s).  So there 
may be as few as only two bearing directions over 180° of angle space.  Not very good angle 
coverage or resolution!  Have I found your Achilles heel?

A.  Not really.  We know the speeds for those two bins very precisely.  And we know that's all there 
are: just two bins, because the 'width' of the Bragg peaks (i.e., the number of bins containing current 
signals) is very well determined.  Suppose the two angle solutions fall out at -57° and +29°, over our 
180° sector.  We know that the currents between these points (and everywhere else over this sector) 
are no greater than + 2.5 cm/s and -2.5 cm/s.  So we can interpolate in bearing-angle space to get a 
smooth plot of radial speed vs angle.  If this wide-angle interpolation bothers you, remember, the 
most you can be off at any bearing point is ±2.5 cm/s, which is merely the Doppler resolution of the 
system.  Simple physics and reasoning!



Q.  OK, I accept that you can get direction from your simple tiny SeaSonde antenna system.  But 
how accurately?

A.  Estimation of accuracy in DF systems is a well known process.  Accuracy depends on the noise 
level.  We estimate the signal covariance matrix throughout the processing, which is a measure of 
the noise power and its impact on the three antenna signals.  As the simplest rule of thumb, 
however, the rms angle error in radians is inversely proportional to the square root of the signal-to-
noise ratio, S/N times the number of independent samples, n, i.e.,  (nxS/N)-1/2.  For example, 
suppose S/N is 100 (i.e., 20 dB), and n = 14 samples are averaged (this is exactly the case with the 
SeaSonde at 256 seconds per sample over one hour).  This gives an rms bearing error of 0.0267 
radians or 1.53°.  In 1980 measurements at Duck, NC, we established a statistical angle error 
between 2° and 3° from the fluctuation in the data, for slightly less averaging.  These two numbers 
are therefore in reasonable agreement.



APPENDIX:  Determination of Two Directions from Crossed-Loop/Monopole Signals

Assume two signals (at the same frequency) arrive at the co-located crossed loops and 
monopole, from unknown directions  ϑa  and  ϑb,  with complex unknown amplitudes  Sa and Sb.  
Assume here for convenience that the angles are defined with respect to the Loop #1 axis.  Then the 
complex received voltages are:

v1   =   S acosϑa  +  S bcosϑb ;

v2   =   S asin ϑa  +  S bsin ϑb ;
v3   =   S a   +  S b  .

Solve the first two of these equations for  Sa and Sb in terms of the measured loop voltages 
and the angles, to get;

S a  =  v1sin ϑb  -  v2cosϑb

sin ϑb  -  ϑa

      and     S b  =  v1sin ϑa  -  v2cosϑa

sin ϑa  -  ϑb

 .

Substitute these into the third equation for the monopole voltage to get:

v3   =   F1v1   +  F2v2 ,  where

F1   ≡   sin ϑa  -  sin ϑb

sin ϑa  -  ϑb

   =   
cos ϑa  +  ϑb

2

cos ϑa  -  ϑb
2

 ;

F2   ≡   cosϑb  -  cosϑa

sin ϑa  -  ϑb

   =   
sin ϑa  +  ϑb

2

cos ϑa  -  ϑb
2

 .

Note that  F1 and F2 are pure real, but the equation above is complex.  Therefore, it becomes 
two equations in the two unknowns:  F1 and F2.

Re v3    =   F1Re v1   +  F2Re v2  ,
   and

Im v3    =   F1Im v1   +  F2Im v2  .

This is then solved for the two unknowns,  F1 and F2, from which we obtain the following 
equations for the two unknown bearing angles of the signals:

ϑa  +  ϑb   =   2ATAN2 F2, F1  ,
and

ϑa  -  ϑb   =   2ACOS
cosϑa  +  ϑb

2
F1

 .



Thus we have solved uniquely for the two angles at the same frequency.  (If you still doubt, try it; it's 
a good 'pocket calculator' exercise.  Dream up signals from two different bearings, ϑa  and  ϑb,  
having any arbitrary complex amplitudes  Sa and Sb.  Put these into the first three equations in the 
Appendix to get the complex voltages received by the antennas.  Then follow the subsequent steps 
to retrieve the angles.  It works!)

Simple Method to Distinguish Dual-Angle from Single-Angle Case:  If there is only a single signal 
present from one angle, we have as our voltages and our solution:

v1   =   S cosϑ ;

v2   =   S sin ϑ ;
v3   =   S  .

ϑ   =   ATAN2 v2
v3

 , v1
v3

 .

Note, however, that for the single-angle case, we clearly have the following identity:

v3
2   =   v1

2   +   v2
2 .

By examining the first three equations of the Appendix for dual-angle voltages -- and trying a couple 
examples -- you can convince yourself that the above identity is not true when two signals are present.  
Therefore, this identity is the simplest test (but not necessarily the most robust statistically) of whether one or 
two signals from different angles are present.


